

# Peace Region Forage Cultivar Testing (PRFCT) Program

Coordinated by

# Peace Region Forage Seed Association and Agriculture and Agri-Food Canada Beaverlodge Research Farm, Alberta

**Annual Report 2017** 

Prepared by

Nityananda Khanal Abdl Rahman Azooz Talon Gauthier

# Contents

| Acknowledgmentsiv                                                                                               |
|-----------------------------------------------------------------------------------------------------------------|
| Contacts on PRFCT Co-operating Research Programv                                                                |
| Protocol for vi                                                                                                 |
| Peace Region Forage Cultivar Testing (PRFCT) Programvi                                                          |
| 2018 Application for Entry viii                                                                                 |
| Executive Summaryix                                                                                             |
| INTRODUCTION1                                                                                                   |
| MATERIALS AND METHODS1                                                                                          |
| RESULTS                                                                                                         |
| Weather effects on crops3                                                                                       |
| Results of completed trials                                                                                     |
| Conclusions of completed trials12                                                                               |
| Results of on-going trials13Creeping red fescue13Tall fescue trial14Meadow fescue15Wheatgrasses16Bromegrasses17 |
| Conclusions                                                                                                     |

# List of Tables

| Table 1 | List of forage and turf grass cultivars from various proprietors tested during the reporting period.                                                                                                                                                                                                                      | 2  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2 | Seed yield of creeping red fescue cultivars in 2016 and 2017 from the trial established in 2015 at<br>Beaverlodge, AB. The trial was seeded on May 13, 2015 and harvested for two crop years on July<br>27th and July 24th in 2016 and 2017 respectively.                                                                 | 6  |
| Table 3 | Seed yield of Timothy cultivars in 2015, 2016 and 2017 from the trial established in 2014 at Beaverlodge, AB. The trial was seeded on May 16, 2014 and harvested for three crop years on August 10 <sup>th</sup> August 12 <sup>th</sup> , and August 10 <sup>th</sup> in 2015, 2016 and 2017 respectively.               | 10 |
| Table 4 | Plant height and aerial dry matter yield at maturity of timothy cultivars in 2015, 2016 and 2017<br>from the trial established in 2014 at Beaverlodge, AB. The trial was seeded on May 16, 2014 and<br>harvested for three crop years on August 10th August 12th, and August 10th in 2015, 2016 and<br>2017 respectively. | 11 |
| Table 5 | Seed yield, plant height and dry matter yield of creeping red fescue cultivars in 2017 from the trial established in 2016 at Beaverlodge, AB. The trial was seeded on May 26, 2016 and harvested July 24, 2017.                                                                                                           | 14 |
| Table 6 | Seed yield, plant height and dry matter yield of tall fescue cultivars in 2017 from the trial established in 2016 at Beaverlodge, AB. The trial was seeded on May 26, 2016 and harvested July 27, 2017                                                                                                                    | 15 |
| Table 7 | Seed yield, plant height and dry matter yield of meadow fescue cultivars in 2017 from the trial<br>established in 2016 at Beaverlodge, AB. The trial was seeded on May 26, 2016 and harvested on<br>July 20, 2017.                                                                                                        | 16 |
| Table 8 | Seed yield, plant height and dry matter yield of crested wheat cultivars in 2017 from the trial established in 2016 at Beaverlodge, AB. The trial was seeded on May 26, 2016 and harvest on July 27, 2017 (Elbee) and August 3, 2017 (rest of the entries).                                                               | 17 |
| Table 9 | Seed yield, plant height and dry matter yield of bromegrasses in 2017 from the trial established in 2016 at Beaverlodge, AB. The trial was seeded on May 26, 2016 and harvested on August 2, 2017.                                                                                                                        | 18 |

# List of Figures

| Figure 1  | Average monthly maximum and minimum temperature during the growing seasons of 2014 to 2017 compared with 30-years' monthly average at Beaverlodge, AB.                                                                                                                             | 4  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2  | Total monthly rainfall during the growing seasons of 2014 to 2017 compared with 30-years' monthly average at Beaverlodge, AB.                                                                                                                                                      | 4  |
| Figure 3  | Photograph taken in 2017 of the creeping red fescue trial established in 2015 at Beaverlodge,<br>AB.                                                                                                                                                                               | 5  |
| Figure 4  | Seed yield trend of creeping red fescue cultivars in two consecutive crop seasons of 2016 and 2017 from the trial established in 2015 at Beaverlodge, AB.                                                                                                                          | 7  |
| Figure 5  | Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) of creeping red fescue in 2016 and 2017 from the cultivar trial established in 2015 at Beaverlodge, AB. Abbreviations: CRF = creeping red fescue; DMy = Dry matter yield; Sy = Seed yield; ht = plant |    |
|           | height.                                                                                                                                                                                                                                                                            | 8  |
| Figure 6  | Photograph taken in 2017 of the Timothy trial established in 2014 at Beaverlodge, AB.                                                                                                                                                                                              | 9  |
| Figure 7  | Seed yield trend of timothy cultivars for three crop years in 2015, 2016 and 2017 from the trial established in 2014 at Beaverlodge, AB.                                                                                                                                           | 11 |
| Figure 8  | Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) of timothy from 2015 to 2017 crop years in the cultivar trial established in 2014 at Beaverlodge, AB.                                                                                                 | 12 |
| Figure 9  | Photograph taken in 2017 of the creeping red fescue trial established in 2016 at Beaverlodge,<br>AB.                                                                                                                                                                               | 13 |
| Figure 10 | Photograph taken in 2017 of the tall fescue trial established in 2016 at Beaverlodge, AB.                                                                                                                                                                                          | 14 |
| Figure 11 | Photograph taken in 2017 of the meadow fescue trial established in 2016at Beaverlodge, AB.                                                                                                                                                                                         | 15 |
| Figure 12 | Photograph taken in 2017 of the crested wheatgrass trial established in 2016 at Beaverlodge,<br>AB.                                                                                                                                                                                | 16 |
| Figure 13 | Photograph taken in 2017 of the bromegrass trial established in 2016 at Beaverlodge, AB.                                                                                                                                                                                           | 18 |

# Acknowledgments

We would like to extend our thanks to the following companies and agencies for their seed entries and sponsorship of our 2017 research endeavors:

Barenbrug Deutsche Saatveredelung AG Foster's Seed & Feed Ltd Imperial Seed Limoges Forage & Grasses Ltd Moore Seed Processors Pure Seed

The following groups and agencies are also thanked for cooperating with the program and managing the research sites:

Peace Region Forage Seed Association Agriculture and Agri-Food Canada Alberta Agriculture and Rural Development

We thank the following for their partnership and technical assistance:

Calvin Yoder, Alberta Agriculture and Forestry Pat Gansevles, Agriculture and Agri-Food Canada Shirley Neighbour, Agriculture and Agri-Food Canada

# **Contacts on PRFCT Co-operating Research Program**

Talon Gauthier PRFSA General Manager Community Futures Peace Liard 904 102nd Ave, Dawson Creek, BC V1G 2B7 Phone: 1 877 630 2198 E-mail : coordinator@peaceforageseed.bc.ca

Nityananda Khanal, Ph.D., P.Ag. Research Scientist Beaverlodge Research Farm Agriculture and Agri-Food Canada P.O. Box 29, 1 Research Road Beaverlodge, AB T0H 0C0 Telephone 780 354 5111 Fax: 780 354 5150 E-mail: Nityananda.Khanal@AGR.GC.CA

Rahman Azooz Forage Research Assistant Agriculture and Agri-Food Canada Box 29, 1 Research Road Beaverlodge, AB T0H 0C0 Phone 780 354 5147 (Lab); 780 832 5947 (Cell) Fax: 780 3545150 E-mail: Rahman.Azooz@AGR.GC.CA

Pat Gansevles Forage Research Technician Agriculture and Agri-Food Canada Box 29, Beaverlodge, AB T0H 0C0 Phone : 780 354 5121 Fax : 780 354-5150 E-mail : Pat.Gansevles@AGR.GC.CA

# Protocol for Peace Region Forage Cultivar Testing (PRFCT) Program

Revised Jan., 17, 2018

#### 1. Research Sponsorship

The research sponsorship of **\$350 CAN/entry/year/location** is requested on an annual basis, as years of production will vary with the species being tested, and applies to the establishment year as well. The Peace Region Forage Seed Association will administer funds for the Peace Region Grass Seed Testing Program. The PRFSA General Manager will invoice each seed company annually.

#### 2. Eligibility of Entries

Released and experimental lines of all tame and native grass species will be considered if they are of interest to commercial seed companies. We reserve the right not to initiate tests:

- if seed arrives late
- if there is lack of space in any year at a particular location
- if there are too few entries in any year for a particular location
- if the germination % of the forage crop seed less than 75%

#### **3.** Seed Requirements and Deadline for Seed Entry

The applicant will provide for **EACH TEST LOCATION**:

- 50 gm of bentgrass, Kentucky bluegrass or timothy
- 100 gm of orchardgrass; creeping red, chewings, hard, meadow, sheep or tall fescue; annual or perennial ryegrass
- 200 gm of meadow or smooth bromegrass, wheatgrasses
- - The germination % of each cultivar

Approved seed entries shall supply seed by **April 1st** of the establishment year and **will include the percent germination and relative maturity** (early, medium or late) of each cultivar. Please indicate whether the submission is **a forage or turf type**.

#### Please ship approved seed to\*:

Peace Region Forage Seed Association 904 102 Ave Dawson Creek, BC V1G 2B7

<sup>\*</sup> European companies submitting entries need to ship their seed to their US or Canadian head office then to the PRFSA. Seed shipped from the US to Canada needs to be accompanied by all phytosanitation paperwork to clear customs.

#### 4. **Publication of Results**

Data will undergo appropriate statistical analysis and each applicant will be provided with an annual report. Information on cultivars will be made available to seed producers upon request. Results will be posted by the end of the fiscal year on the research page of the website www.peaceforageseed.ca

All reasonable care will be taken to ensure a successful test; however, a guarantee cannot be made that a particular test will be successful. If required a test will be reseeded.

Some results in this report have been tested for one or two harvested years. It is advised not to use average yield figures to make cultivar comparisons for these years. Only after a minimum of two harvested years of creeping red fescue or three harvested years of timothy, meadow fescue, tall fescue, meadow bromegrass and smooth bromegrass as a recommended year for the test, the data should be considered as 90% reliable. In some cases, data may not be reported due to extreme variations that cannot be accounted for in the statistical design.

#### Disclaimer

Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement is implied.

#### 5. Use of Seed

Seed submitted will only be used to establish the agreed upon trials. The seed will **NOT** be used for increase, selection or distribution.

#### Peace Region Forage Cultivar Testing (PRFCT) Program

# **2018** Application for Entry

**Company:** 

**Contact person:** 

Mailing address:

Telephone: Fax:

Email:

| Species | Type<br>Forage/turf | Cultivar name/code | % Germ | Relative maturity<br>early, medium,<br>late |
|---------|---------------------|--------------------|--------|---------------------------------------------|
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |
|         |                     |                    |        |                                             |

#### Send application form no later than March 15, 2018 to:

#### Nityananda Khanal

Beaverlodge Research Farm Agriculture and Agri-Food Canada P.O. Box 29, 1 Research Road Beaverlodge, AB T0H 0C0 Telephone: 780 354 5111 Email: Nityananda.Khanal@AGR.GC.CA

#### **Talon Gauthier**

Community Futures Peace Liard 904 102<sup>nd</sup> Ave Dawson Creek, BC V1G 2B7 Phone: 1 877 630 2198 E-mail : coordinator@peaceforageseed.ca

Or

# **Executive Summary**

Agriculture and Agri-Food Canada (AAFC) - Beaverlodge Research Farm and Peace Region Forage Seed Association (PRFSA) have established a long-term collaboration through a program known as the Peace Region Forage Seed Testing (PGRST) and various Agri-Innovation projects under Growing Forward 2 policy framework. This report presents the results of various forage and turf grass cultivars that were evaluated for seed yield for two to three perennial crop seasons from 2014 to 2017.

Various cultivars of creeping red fescue (*Festuca rubra* L. var. *rubra*), timothy (*Phleum pratense* L.), meadow fescue (*Festuca pratensis* Huds.), tall fescue (*Festuca arundinacea*), crested wheatgrass [*Agropyron cristatum* (L.) Gaertn.], northern wheatgrass [*Agropyron dasystachyum* (Hook.) Scribn.], meadow bromegrass (*Bromus riparius* Rehm.), smooth bromegrass (*Bromus inermis* Leyss) and hybrid bromegrass (*Bromus riparius* × *Bromus inermis*) were tested for their seed yield in comparison to popular cultivars of respective species in the region. One trial on creeping red fescue and one on timothy were concluded in the reporting period, while one trial each of creeping red fescue, meadow fescue, tall fescue, timothy, wheat grasses and bromegrasses underwent the evaluation for first crop year and is subjected to further evaluations in the coming seasons. The forage grass cultivars and the checks included in the trials were received from various Canadian and international seed companies and their foreign affiliates including Barenbrug, Deutsche Saatveredelung AG, Foster's Seed & Feed Ltd, Imperial Seed, Limoges Forage & Grasses Ltd, Moore Seed Processors, and Pure Seed.

Variable weather patterns in different years provided desirable test environment for examining the adaptability of the cultivars in the peace region. From the concluded trial of creeping red fescue, cultivar MSPO314 produced significantly higher cumulative seed yield than rest of the cultivars, exceeding the check cultivar Boreal by 21% on average. Boreal remained to be the second highest in seed yield. Likewise from the concluded trial of timothy, 7 out of 8 cultivars from Barenbrug USA, including Barfleo, Bor01025, Bor01033, Bor01037, Bor2005, Bor88060 and PHLR99 out-yielded the check cultivar Climax, with cumulative seed yield advantage ranging from 12 to 25% over the Climax for three crop years. Seed yield is the major trait of economic interest for creeping red fescue, provided the cultivars have similar end use quality – the turf. However in timothy, the end use value lies on the forage biomass quantity, quality and stand persistence. Based on the cumulative dry matter yield, climax could still be the cultivar of choice for forage biomass production for livestock.

# **INTRODUCTION**

Endowed with extensive northern agricultural frontier with varied micro-climates, the Peace River region of Canada offers good potential to produce high quality seeds of forages and turf grass for the domestic and export market. About 25,000 metric tons (55 million lbs.) of forage and turf grass seeds are sold annually from this region. Use of regionally adapted cultivars with appropriate management practices conforming to the national and international standards are crucial factors underlying the successful seed industry. Weed, insect pests and disease management are continuous challenges for crop production in the changing climate.

In order to tackle the production constraints and foster the forage seed industry in this internationally reputed region, the Agriculture and Agri-Food Canada (AAFC) - Beaverlodge Research Farm has been collaborating with the Peace Region Forage Seed Association (PRFSA) through a long-term Peace Region Forage Seed Testing (PGRST) Program (originally known as Western Grass Seed Testing Program) and various Agri-Innovation projects under Growing Forward 2 policy framework of Canada. The primary objective of the PRGST program is to evaluate the adaptability, productivity and quality of the proprietary forage cultivars originated from U.S.-based and European companies for contract seed production in western Canada. Now the program name is further updated as Peace Region Forage Cultivar Testing (PRFCT) Program to include the broader scope of activities.

This report presents the results of various forage and turf grass cultivars that were evaluated for seed yield for two to three perennial crop seasons from 2014 to 2017. Various cultivars of creeping red fescue (*Festuca rubra* L. var. *rubra*), timothy (*Phleum pratense* L.), meadow fescue (*Festuca pratensis* Huds.), tall fescue (*Festuca arundinacea*), crested wheatgrass [*Agropyron cristatum* (L.) Gaertn.], northern wheatgrass [*Agropyron dasystachyum* (Hook.) Scribn.], meadow bromegrass (*Bromus riparius* Rehm.), smooth bromegrass (*Bromus inermis* Leyss) and hybrid bromegrass (*Bromus riparius* × *Bromus inermis*) were tested for their seed yield in comparison to popular cultivars of respective species in the region. Adaptability and performance testing of cultivars of different geographical origin is very crucial for both seed companies and producers for making informed contractual decisions.

# MATERIALS AND METHODS

The PRGST trials were conducted at AAFC's Beaverlodge Research Farm, AB (55° 11′ N, 119° 32′ W) from 2014 to 2017. A total of 79 proprietary entries of different forage and turf grass species from various origins were evaluated in this period. The number of entries included 51 of creeping red fescue, 12 of timothy, 2 of meadow fescue, 5 of tall fescue, 5 of wheatgrasses and 4 of bromegrasses were tested for seed yield in comparison to popular cultivar of respective species in the Peace region (Table 1). The forage grass cultivars and the checks included in the trials were originated or received from AAFC, and various Canadian and international seed companies and their foreign affiliates including Barenbrug, Deutsche Saatveredelung AG, Foster's Seed & Feed Ltd, Imperial Seed, Limoges Forage & Grasses Ltd, Moore Seed Processors, and Pure Seed.

| Forage<br>species | Year of<br>seeding | Seed sources                                    | No. of<br>Entries | Cultivars                                                                      | Year of evaluation |
|-------------------|--------------------|-------------------------------------------------|-------------------|--------------------------------------------------------------------------------|--------------------|
| -                 |                    | Imperial Seed                                   | 4                 | Reverent, DSV 15-01, DSV 15-02, DSV 15-03                                      |                    |
|                   |                    | Pure Seed                                       | 7                 | 4SHR, 4BEN, 4RUE-14, 4SP14, 4ED4, 4DR4, 4GRY                                   |                    |
|                   | 2015               | 2015 Moore Seed<br>Processors                   |                   | MSPO114, MSPO214, MSPO314, MSPO414,<br>MSPO514, MSPO614, MSG0412, MSR0612      | 2016 - 2017        |
|                   |                    | Barenbrug USA                                   | 2                 | Bridgeport II, BAR VV-VP3-CT                                                   |                    |
|                   |                    | Foster's Seed & Feed                            | 2 4CRD-8, ASC295  |                                                                                |                    |
| Creeping Red      | 2016               | Barenbrug USA                                   | 1                 | BAR FRR 15134                                                                  |                    |
| I escue           |                    | Foster's Seed & Feed                            | 3                 | C8-14-4ED4, Chanellor Chewings, C8-14-4BEN                                     | 2017 - 2018        |
|                   |                    | Imperial Seed 3 DSV 15-01, DSV 15-02, DSV 15-03 |                   |                                                                                |                    |
|                   |                    | BrettYoung                                      | 4                 | BY-676, BY-369-13883, BY-2889, BY17-8070                                       |                    |
|                   | 2017               | Moore Seed<br>Processors                        | 7                 | MSP-03-17, MSP-06-17, MSP-07-17, MSP-08017,<br>MSP-02-17, MSP-04-17, MSP-05-17 | 2017- 2019         |
|                   |                    | Foster's Seed & Feed                            | 3                 | Fosters FX, Fosters FO & Boreal                                                |                    |
|                   |                    | Moore Seed<br>Processors                        | 1                 | MST0513                                                                        |                    |
| Timothy           | 2014               | Barenbrug USA                                   | 8                 | PHL1R99, Bor01033, Bor2005, Bor01025, Bor88060,<br>Bor01037, Barpenta, Barfleo | 2015 - 2017        |
|                   | 2017               | Northstar Seed                                  | 3                 | NSE1701, NSE1723, NSE1730                                                      | 2018 - 2020        |
| Wheatgrass        | 2016               | Limoges Forage & Grasses Ltd                    | 4                 | Crested: Kirk, AC New Kirk, Fairway<br>Northern: Elbee                         | 2017 - 2019        |
|                   |                    | Barenbrug USA                                   | 1                 | BAR-GRL-CWG                                                                    |                    |
| Bromegrass        | 2016               | Barenbrug USA                                   | 2                 | BAR BCF 1FRRL (meadow bromegrass),<br>BAR BIF 1GRL (smooth bromegrass)         | 2017-2019          |
|                   |                    | AAFC                                            | 2                 | S9356M (meadow bromegrass),<br>AC Knowels (hybrid Bromegrass)                  |                    |
| Tall Fescue       | 2017               | Foster's Seed & Feed                            | 5                 | Titan Rx, Titan Ultra, Covenant, Rendition RX, Hudson                          | 2018 - 2020        |
| Meadow<br>Fescue  | 2017               | Barenbrug USA                                   | 2                 | BAR FP 32, Pradel                                                              | 2017-2019          |

**Table 1**List of forage and turf grass cultivars from various proprietors tested during the<br/>reporting period.

As perennial species, the forage seed crops comprised an establishment year followed by two to three consecutive harvest years, referred to as crop years. Creeping red fescue are evaluated for two crop years, while tall fescue, meadow fescue, timothy, wheatgrasses and bromegrasses are evaluated for three crop years. The testing site at Beaverlodge had been under pea-barley-wheat-canola crop sequences in the previous years prior to the trials. The trials were direct-seeded without tillage and fertilizers were applied in the fall on the basis of soil test results. Weeds were controlled by a combination of mechanical and chemical measures with the application of recommended herbicides. Individual experimental plots were comprised of four rows, each 6 m

long with row spacing of 30 cm apart. The yield samples were collected from the central two rows.

The experimental design for all PGRST trials was a randomized complete block with four replications. The data were analyzed by using GLIMMIX, CORR and Means Procedures of SAS<sup>®</sup> 9.4 System.

### RESULTS

#### Weather effects on crops

The results included in this report were derived from trials that were established in 2014, 2015 and 2016. Despite some anomalies of the May and October temperatures over the reporting years from 2014 to 2017, the monthly maximum and minimum temperatures in other growing months displayed similar patterns with long-term average for last 30 years (Figure 1). However, the amount and distribution of precipitation showed noticeable monthly variation in growing seasons over the reporting period (Figure 2). In general, the growing season in 2015 and 2016 received higher amount of precipitation, with seasonally wettest months being July and August respectively, while 2014 and 2017 growing seasons remained much drier than the long-term average of 30 years. This condition results in variation in soils moisture regimes in growing season in different years causing fluctuations in productivity. Negligible precipitation in August of 2014 when most of the species would be undergoing reproductive processes could have negative effect on seed development. The 2015 growing season showed typical modal pattern of monthly precipitation favouring the moisture demand of the plants. The precipitation pattern in 2016 was also favourable for active growth period, except for a high terminal rainfall in August of 2016 that caused lodging and some impairment in the harvesting process. The 2017 growing season started with warmer and wetter spring followed by gradual decline in precipitation over the months causing some moisture stress during reproductive stage, while permitting favorable dry harvest conditions (Figure 2).



**Figure 1** Average monthly maximum and minimum temperature during the growing seasons of 2014 to 2017 compared with 30-years' monthly average at Beaverlodge, AB.



**Figure 2** Total monthly rainfall during the growing seasons of 2014 to 2017 compared with 30-years' monthly average at Beaverlodge, AB.

## **Results of completed trials**

### **Creeping red fescue**

The experiment containing 24 cultivars of creeping red fescue was established in 2015. Figure 3 shows a pre-harvest snapshot of the trial in 2017. The test cultivars exhibited differences in seed yield, aerial dry biomass and plant height. There were large differences in seed yield between the cultivars within the same crop season (P < 0.01), with significant yield decline (P < 0.01) in the second crop year within the cultivars and significant cultivar by year interactions (P < 0.01) (Table 2). Average yield ranged from 119 to1083 kg ha<sup>-1</sup> (106 to 967 lbs acre<sup>-1</sup>) in the first crop year of 2016, and the cumulative seed yield over two crop years 2016 and 2017 ranged from 163 to 1624 kg ha<sup>-1</sup> (145 to 1450 lbs acre<sup>-1</sup>). Cultivar MSPO314 produced significantly higher cumulative seed yield than rest of the cultivars, exceeding the check cultivar Boreal by 21% on average. Boreal remained to be the second highest in seed yield. The yield differences between Boreal, MSPO214, MSPO114, MSG0412, DSV1501, MSPO614 and MSR0612 were not statistically significant, although Boreal had 5 to 20% higher cumulative yield than the latter. Cumulative two-year seed yields of 11 cultivars were higher than average yield of all 24 cultivars for the same period.



**Figure 3** *Photograph taken in 2017 of the creeping red fescue trial established in 2015 at Beaverlodge, AB.* 

**Table 2**Seed yield of creeping red fescue cultivars in 2016 and 2017 from the trial established<br/>in 2015 at Beaverlodge, AB. The trial was seeded on May 13, 2015 and harvested for<br/>two crop years on July 27th and July 24th in 2016 and 2017 respectively.

|               |            | Plant | height | Dry  | matter y  | /ield |      |         | Seed yield |      |             |        |        |
|---------------|------------|-------|--------|------|-----------|-------|------|---------|------------|------|-------------|--------|--------|
| Company       | Cultivar   | 2016  | 2017   | 2016 | 2017      | Total | 2016 | 2017    | Total      | 2016 | 2017        | 2016   | 2017   |
|               |            | (CI   | n)     |      | (kg ha-1) | )     |      | kg ha-1 |            | lb a | <b>C</b> -1 | % of I | Boreal |
| Pure Seed     | 4BEN       | 59    | 64     | 2914 | 3903      | 6816  | 420  | 264     | 684        | 375  | 236         | 47     | 59     |
|               | 4DR4       | 54    | 65     | 2604 | 3897      | 6501  | 382  | 200     | 583        | 341  | 179         | 43     | 45     |
|               | 4ED4       | 55    | 59     | 2532 | 3576      | 6108  | 523  | 383     | 906        | 467  | 342         | 59     | 86     |
|               | 4GRY       | 60    | 64     | 2521 | 3350      | 5870  | 326  | 192     | 519        | 291  | 172         | 37     | 43     |
|               | 4PUE14     | 55    | 61     | 3258 | 3333      | 6591  | 457  | 278     | 735        | 408  | 248         | 51     | 62     |
|               | 4SHR       | 58    | 72     | 1968 | 2387      | 4355  | 255  | 252     | 506        | 228  | 225         | 29     | 57     |
|               | 4SP14      | 55    | 61     | 2018 | 3687      | 5705  | 273  | 306     | 580        | 244  | 273         | 31     | 69     |
| Imperial Seed | Reverent   | 77    | 75     | 3503 | 3366      | 6869  | 768  | 246     | 1014       | 685  | 219         | 86     | 55     |
|               | DSV1501    | 74    | 72     | 3252 | 2712      | 5964  | 776  | 379     | 1154       | 692  | 338         | 87     | 85     |
|               | DSV1502    | 74    | 81     | 2728 | 3210      | 5938  | 640  | 332     | 972        | 571  | 296         | 72     | 75     |
|               | DSV1503    | 73    | 73     | 2690 | 3010      | 5700  | 609  | 185     | 794        | 543  | 165         | 68     | 42     |
| Moore Seed    | MSG0412    | 69    | 69     | 3139 | 3723      | 6862  | 680  | 479     | 1159       | 607  | 428         | 76     | 107    |
| Processors    | MSPO114    | 73    | 77     | 3350 | 3395      | 6746  | 886  | 320     | 1206       | 790  | 286         | 99     | 72     |
|               | MSPO214    | 76    | 78     | 3419 | 3745      | 7164  | 852  | 422     | 1274       | 760  | 377         | 95     | 95     |
|               | MSPO314    | 74    | 75     | 3188 | 4147      | 7335  | 1083 | 541     | 1624       | 966  | 483         | 121    | 121    |
|               | MSPO414    | 66    | 66     | 2817 | 3839      | 6655  | 586  | 364     | 949        | 523  | 325         | 66     | 82     |
|               | MSPO514    | 68    | 63     | 2138 | 2283      | 4421  | 119  | 43      | 163        | 106  | 39          | 13     | 10     |
|               | MSPO614    | 54    | 64     | 2323 | 3032      | 5355  | 628  | 509     | 1138       | 560  | 455         | 70     | 114    |
|               | MSR0612    | 63    | 66     | 3233 | 3322      | 6556  | 864  | 255     | 1119       | 771  | 227         | 97     | 57     |
| Barenbrug USA | BARVVVP3CT | 59    | 71     | 2314 | 3144      | 5458  | 221  | 294     | 515        | 197  | 262         | 25     | 66     |
|               | Bridgeport | 71    | 81     | 2796 | 3317      | 6113  | 294  | 225     | 519        | 262  | 201         | 33     | 51     |
| Foster's Seed | 4CRD8      | 57    | 63     | 2535 | 3456      | 5991  | 416  | 363     | 779        | 371  | 324         | 47     | 82     |
|               | ASC295     | 75    | 76     | 3071 | 3324      | 6395  | 505  | 287     | 792        | 451  | 256         | 57     | 64     |
| Check         | Boreal     | 70    | 77     | 3169 | 2749      | 5918  | 893  | 446     | 1339       | 797  | 398         | 100    | 100    |
| CV%           | CV%        |       | 5      | 14   | 16        | 11    | 18   | 21      | 15         |      |             |        |        |
| LSD           | 0.05       | 7     | 7      | 642  | 1065      | 1228  | 204  | 128     | 256        |      |             |        |        |

Seed yield stability of the cultivars from first crop year to second crop year was highly different, showing sharp declining trends by higher yielding cultivars and steady to increasing trends by the rest. All cultivars that produced higher than average seed yields showed 26 to 70% decline in yields in the second crop year (Table 2; Figure 4). Therefore, the seed yield ranks were not consistent for most of the cultivars for two successive growing seasons (Figure 4).



**Figure 4** Seed yield trend of creeping red fescue cultivars in two consecutive crop seasons of 2016 and 2017 from the trial established in 2015 at Beaverlodge, AB.

Cumulative dry biomass yield of the cultivars ranged from 4,355 to 7,335 kg ha<sup>-1</sup> (3,885 to 6,562 lbs acre<sup>-1</sup>), with significant differences in yield within and between years (P < 0.01). The highest seed yielder MSPO314 also had highest biomass yield, while Boreal was among the medium biomass yielder. Most of the cultivars produced higher biomass in the second crop year.

Average plant heights of the cultivars ranged from 54 to 77 cm in the first crop season and 63 to 81 cm in the second crop season, with most of the cultivars showing higher values in the successive harvest season (Table 2). For plant heights, there were significant differences between the cultivars (P < 0.01) and between the years within the cultivars (P < 0.01), with significant cultivar by year interactions (P < 0.01). The cultivars could be statistically differentiated in the order of tall (DSV1502, MSPO214, Bridgep, Reveren, MSPO114, ASC295, MSPO314, Boreal, DSV1503 and DSV1501), medium (MSG0412, MSPO414, MSPO514, 4SHR, MSR0612 and

BARVVVP) and dwarf (4GRY, 4BEN, 4CRD8, 4DR4, MSPO614, 4PUE14, 4SP14 and 4ED4) with corresponding ranges of 73 - 78 cm, 64 - 69 cm and 56 - 62 cm average heights. Plant heights increased significantly in the second crop year (P < 0.01) (Table 2). The seed yield, dry biomass and plant heights showed moderately positive (r = 0.22 to 0.27), but significant correlations (P < 0.01) in creeping red fescues (Figure 5).



Figure 5 Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) of creeping red fescue in 2016 and 2017 from the cultivar trial established in 2015 at Beaverlodge, AB. Abbreviations: CRF = creeping red fescue; DMy = Dry matter yield; Sy = Seed yield; ht = plant height.

### Timothy

The timothy trial established in 2014 comprised 10 cultivars of which 8 cultivars were from Barenbrug USA, 1 from Moore Seed Processors and a check cultivar, Climax. A photograph of the Timothy trial taken in 2017 is presented in Figure 6. There were significant differences between the cultivars (P < 0.01) and between the years within the cultivars (P < 0.01), with significant cultivar by year interactions (P < 0.01). In the contrasting seasonal rainfall amount and distribution pattern from 2015 to 2017, 7 out of 8 cultivars from Barenbrug USA, including Barfleo, Bor01025, Bor01033, Bor01037, Bor2005, Bor88060 and PHLR99 out-yielded the check cultivar Climax, with cumulative yield advantage ranging from 12 to 25% over the Climax (Table 3) for three crop years. Bor01025, with 25% higher cumulative seed yield then Climax, had statistically significant yield advantage over Climax, MST0513 and Barpenta. Bor01025, Bor88060, PHLR99, Bor2005, Bor01037, Bor01033 and Barfleo stood statistically at par for cumulative seed yield for 3 years. The differences in seed yield between the cultivars were more pronounced in the first and the third crop years (Table 3 and Figure 7).



**Figure 6** *Photograph taken in 2017 of the Timothy trial established in 2014 at Beaverlodge, AB.* 

**Table 3**Seed yield of Timothy cultivars in 2015, 2016 and 2017 from the trial established in<br/>2014 at Beaverlodge, AB. The trial was seeded on May 16, 2014 and harvested for<br/>three crop years on August 10th August 12th, and August 10th in 2015, 2016 and 2017<br/>respectively.

| Company                     | Cultivar | Seed yield |       |       | Seed yield |      |       |      | Seed yield |      |        |       |       |
|-----------------------------|----------|------------|-------|-------|------------|------|-------|------|------------|------|--------|-------|-------|
|                             |          | 2015       | 2016  | 2017  | Total      | 2015 | 2016  | 2017 | Total      | 2015 | 2016   | 2017  | Total |
|                             |          |            | (kg l | ha-1) | 1          |      | (lb a | ;-1) | 1          |      | % of C | limax | 1     |
| Barenbrug<br>USA            | Barfleo  | 1145       | 1251  | 645   | 3040       | 1022 | 1116  | 576  | 2715       | 123  | 115    | 131   | 119   |
|                             | Barpenta | 824        | 444   | 336   | 1603       | 735  | 396   | 300  | 1431       | 88   | 41     | 68    | 63    |
|                             | Bor01025 | 1287       | 1242  | 763   | 3293       | 1148 | 1108  | 681  | 2941       | 138  | 115    | 154   | 125   |
|                             | Bor01033 | 1235       | 1113  | 716   | 3064       | 1102 | 993   | 639  | 2736       | 132  | 103    | 145   | 116   |
|                             | Bor01037 | 1147       | 1117  | 806   | 3070       | 1023 | 997   | 720  | 2742       | 123  | 103    | 163   | 112   |
|                             | Bor2005  | 1223       | 1129  | 737   | 3089       | 1091 | 1007  | 658  | 2758       | 131  | 104    | 149   | 117   |
|                             | Bor88060 | 1229       | 1249  | 701   | 3178       | 1096 | 1114  | 626  | 2838       | 132  | 115    | 142   | 123   |
|                             | PHLR99   | 1231       | 1263  | 675   | 3010       | 1098 | 1127  | 603  | 2688       | 132  | 117    | 137   | 124   |
| Moore<br>Seed<br>Processors | MST0513  | 903        | 1039  | 737   | 2679       | 806  | 927   | 658  | 2392       | 97   | 96     | 149   | 96    |
| Check                       | Climax   | 933        | 1084  | 494   | 2511       | 832  | 967   | 441  | 2242       | 100  | 100    | 100   | 100   |
| (                           | CV%      | 10         | 8     | 8     | 8          |      |       |      |            |      |        |       |       |
| L                           | _SD 0.05 | 230        | 186   | 111   | 465        |      |       |      |            |      |        |       |       |

The cultivars differed significantly (P = 0.02) for biomass production, where Climax was the highest and MST0513 the lowest producer. Biomass yield of Bor88060, Bor01025 and PHLR99 did not differ significantly from Climax, while rest of the cultivars yielded significantly less than Climax (Table 4). All cultivars had significantly higher biomass yield in second crop year than the first and third crop years (P < 0.01).

Except for the cultivar Barpenta which showed progressively declining seed yield over the crop years, rest of the cultivars had stable yield for first two crop years with about 29 to 47% yield decline in the third crop year (Table 3 and Figure 7).

The plant heights differed significantly between the cultivars (P < 0.01) and between the years within the cultivars (P < 0.01), with no cultivar by year interaction. Climax had significantly taller plants followed by Bor88060, Barfleo, Bor01033 and Bor2005 (Table 4). The plant heights showed quadratic trend with the significant increase in the second crop year and decrease in the third crop year (Figure 7).

The seed yield of timothy is moderately correlated with biomass yield (r = 0.42517; P < .01) and plant height (r = 0.64191; P < .0001) (Figure 8). This means that the cultivar with high seed yield will also have high end use quality.

**Table 4**Plant height and aerial dry matter yield at maturity of timothy cultivars in 2015, 2016<br/>and 2017 from the trial established in 2014 at Beaverlodge, AB. The trial was seeded<br/>on May 16, 2014 and harvested for three crop years on August 10th August 12th, and<br/>August 10th in 2015, 2016 and 2017 respectively.

|               |          | F    | Plant heigh | ıt   | Dry matter yield |       |                      |       |  |
|---------------|----------|------|-------------|------|------------------|-------|----------------------|-------|--|
| Company       | Cultivar | 2015 | 2016        | 2017 | 2015             | 2016  | 2017                 | Total |  |
|               |          |      | cm          |      |                  | (kg   | g ha <sup>-1</sup> ) |       |  |
|               | Barfleo  | 117  | 124         | 102  | 10011            | 14126 | 8526                 | 32662 |  |
|               | Barpenta | 109  | 112         | 100  | 7296             | 14001 | 10176                | 31473 |  |
| Barenbrug USA | Bor01025 | 111  | 117         | 100  | 9211             | 15554 | 9474                 | 34238 |  |
|               | Bor01033 | 114  | 119         | 97   | 8675             | 14289 | 8256                 | 31220 |  |
|               | Bor01037 | 112  | 114         | 99   | 8039             | 14190 | 8523                 | 30752 |  |
|               | Bor2005  | 114  | 115         | 100  | 8737             | 14212 | 8802                 | 31750 |  |
|               | Bor88060 | 120  | 123         | 103  | 9605             | 15599 | 9411                 | 34615 |  |
|               | PHLR99   | 110  | 116         | 96   | 10156            | 14689 | 9109                 | 33954 |  |
| Moore Seed    | MST0513  | 108  | 113         | 98   | 8685             | 12234 | 8113                 | 29031 |  |
| Processors    |          |      |             |      |                  |       |                      |       |  |
| Check         | Climax   | 126  | 127         | 104  | 11733            | 16546 | 9450                 | 37728 |  |
| CV%           |          | 5    | 6           | 3    | 8                | 7     | 13                   | 7     |  |
|               | LSD 0.05 | 12   | 14          | 6    | 1502             | 2093  | 2435                 | 4909  |  |



**Figure 7** Seed yield trend of timothy cultivars for three crop years in 2015, 2016 and 2017 from the trial established in 2014 at Beaverlodge, AB.



**Figure 8** Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) of timothy from 2015 to 2017 crop years in the cultivar trial established in 2014 at Beaverlodge, AB.

#### Conclusions of completed trials

Seed yield is the major trait of economic interest for creeping red fescue, provided the cultivars have similar end use quality – the turf. Based on the seed yield performance of two crop seasons, MSPO314 cultivar from Moore Seed Processors stood out to be promising in the Peace Region. Other five cultivars from Moore Seed Processors (MSPO214, MSPO114, MSG0412, MSPO614 and MSR0612) and one cultivar from Imperial Seed (DSV1501) also yielded comparably to popular check Boreal. The differential yield stability of the cultivars implicates that producers will have options to choose cultivars for a single or more harvest years, and that there is opportunity to improve this attribute through population improvement.

The end use value in timothy lies on the forage biomass quantity, quality and stand persistence. Based on seed yield responses, there are promising alternatives to Climax for the adaptability to Peace region. However, based on the cumulative dry matter yield, climax could still be the cultivar of choice for forage biomass production for livestock. All cultivars had higher biomass yield in second crop year than the first and third crop years. This may be related to both developmental physiology and the soil moisture availability during the growth period of the crop.

#### Results of on-going trials

### **Creeping red fescue**

The creeping red fescue trial established in 2016 has results of one crop year in 2017 and is planned to be evaluated for second crop year in 2018. Figure 9 shows a snapshot of the trial. Final results will be presented in 2018 report. The trial included seven proprietary cultivars being compared with the check – Boreal. Boreal remained to be the winner in seed yield followed closely by Chanellor from Foster Seed & Feed, yielding 3% less than the former, which is not statistically significant. Other three cultivars lagged far behind in seed yield as compared to Boreal (Table 5).



**Figure 9** *Photograph taken in 2017 of the creeping red fescue trial established in 2016 at Beaverlodge, AB.* 

**Table 5**Seed yield, plant height and dry matter yield of creeping red fescue cultivars in 2017<br/>from the trial established in 2016 at Beaverlodge, AB. The trial was seeded on May<br/>26, 2016 and harvested July 24, 2017.

|               |               | Plant height | Dry matter yield | Seed yield |         |            |  |
|---------------|---------------|--------------|------------------|------------|---------|------------|--|
| Company       | Cultivar      | cm           | kg ha-1          | kg ha-1    | lb ac-1 | % of check |  |
| Barenbrug USA | BAR FRR 15134 | 66.75        | 3068             | 995        | 888     | 84         |  |
|               | C814-4BEN     | 68.50        | 3223             | 562        | 502     | 47         |  |
| Foster seed & | C8-14-4EDN    | 64.25        | 3252             | 776        | 693     | 65         |  |
| feed          | Chanellor     | 80.00        | 4265             | 1152       | 1028    | 97         |  |
|               | DSV1501       | 76.50        | 3861             | 896        | 800     | 76         |  |
| Imperial Seed | DSV1502       | 75.00        | 3527             | 709        | 633     | 60         |  |
|               | DSV1503       | 78.50        | 4083             | 987        | 882     | 83         |  |
| Check         | Boreal        | 80.50        | 4263             | 1185       | 1058    | 100        |  |
| CV%           |               | 2            | 6                | 8.6        |         |            |  |
|               | LSD 0.05      | 3.6          | 443              | 162.9      |         |            |  |

## Tall fescue trial

The tall fescue trial established in 2016 has results of one crop year in 2017 and is due to be evaluated for second and third crop years in 2018 and 2019 respectively. Final reports will ensue after the evaluation in 2018 and 2019. Figure 10 is a snapshot of the trial in 2017.



**Figure 10** *Photograph taken in 2017 of the tall fescue trial established in 2016 at Beaverlodge, AB.* 

The trial included four cultivars from Barenbrug being compared with the check – Courtenay. The test cultivars showed poorer adaptability to Peace region compared to Courtenay for the seed yield (Table 5). BAR FA 14173-11 suffered more severe winter injury, but exhibited satisfactory growth recovery in the spring producing a quarter the amount of Courtenay. Other three cultivars produced lower seed yield as compared to the check Courtenay.

**Table 6**Seed yield, plant height and dry matter yield of tall fescue cultivars in 2017 from the<br/>trial established in 2016 at Beaverlodge, AB. The trial was seeded on May 26, 2016<br/>and harvested July 27, 2017

|           | Cultivar        | Plant height | Dry matter yield | Seed yield |      |            |  |
|-----------|-----------------|--------------|------------------|------------|------|------------|--|
| Company   |                 | cm           | kg ha⁻¹          | kg ha⁻¹    |      | % of check |  |
| Barenbrug | BAR FA 11701    | 101          | 5530             | 824        | 736  | 68         |  |
| USA       | BAR FA 14173-11 | 75           | 1697             | 317        | 283  | 26         |  |
|           | BAR FA 14173-15 | 73           | 1685             | 330        | 294  | 27         |  |
|           | Bariane         | 106          | 5123             | 815        | 728  | 67         |  |
| Check     | Courtenay       | 116          | 6110             | 1217       | 1086 | 100        |  |
| CV%       |                 | 28           | 6                | 8          |      |            |  |
|           | LSD 0.05        | 7.2          | 619              | 142        |      |            |  |

### Meadow fescue

A meadow fescue trial established in 2016 included two new cultivars originated from Barenbrug, USA and a check cultivar Preval (Table 7). The new cultivars produced statistically comparable seed and biomass yield to Preval and matured earlier than the creeping red fescue. Meadow fescues have much taller growth form than the creeping red fescue, with heights ranging from 97 to 102 cm. The trial will continue for two more crop years.



**Figure 11** Photograph taken in 2017 of the meadow fescue trial established in 2016at Beaverlodge, AB.

**Table 7**Seed yield, plant height and dry matter yield of meadow fescue cultivars in 2017 from<br/>the trial established in 2016 at Beaverlodge, AB. The trial was seeded on May 26,<br/>2016 and harvested on July 20, 2017.

| Company          | Cultivar  | Plant height Dry matter yield |         | Seed yield |         |            |  |  |
|------------------|-----------|-------------------------------|---------|------------|---------|------------|--|--|
|                  |           | cm                            | kg ha⁻¹ | kg ha⁻¹    | lb ac-1 | % of check |  |  |
| Barenbrug<br>USA | BAR FP 32 | 97                            | 5190    | 991        | 885     | 94         |  |  |
|                  | Pradel    | 98                            | 5031    | 1046       | 934     | 99         |  |  |
| Check            | Preval    | 102                           | 5229    | 1056       | 943     | 100        |  |  |
|                  | CV%       | 3.6                           | 4.5     | 3.9        |         |            |  |  |
|                  | LSD 0.05  | 8.7                           | 564.1   | 98.5       |         |            |  |  |

#### Wheatgrasses

The wheatgrasses trial established in 2016 comprised 4 proprietary entries that included 4 cultivars of crested wheatgrass and 1 cultivar of northern wheat cultivars being compared with Fairway cultivar of wheatgrass as a check. Figure 12 is a photograph of the trial in the crop year 2017.



**Figure 12** Photograph taken in 2017 of the crested wheatgrass trial established in 2016 at Beaverlodge, AB.

The cultivar Kirk produced statistically comparable seed yield to the Check – Fairway. Rest of the test cultivars yielded significantly lower than Fairway. With tallest plants, BAR-GRL-CWG had significantly higher biomass yield, while northern wheatgrass cultivar Elbee had the lowest biomass yield (Table 8). The trial will continue for two more crop years.

**Table 8**Seed yield, plant height and dry matter yield of crested wheat cultivars in 2017 from<br/>the trial established in 2016 at Beaverlodge, AB. The trial was seeded on May 26,<br/>2016 and harvest on July 27, 2017 (Elbee) and August 3, 2017 (rest of the entries).

| Company          | Сгор                | Cultivar        | Plant<br>height | Dry matter<br>yield | Seed yield |         | eld        |
|------------------|---------------------|-----------------|-----------------|---------------------|------------|---------|------------|
|                  |                     |                 | cm              | (kg ha⁻¹)           | kg ha⁻¹    | lb ac-1 | % of check |
| Limoges          | Crested wheat       | Kirk            | 85              | 3095                | 204        | 182     | 98         |
| Forage &         | Crested wheat       | AC New Kirk     | 89              | 3230                | 138        | 123     | 66         |
| Grasses<br>Ltd   | Northern wheatgrass | Elbee           | 74              | 1087                | 163        | 145     | 78         |
| Barenbrug<br>USA | Creeping wheatgrass | BAR-GRL-<br>CWG | 99              | 4069                | 167        | 149     | 80         |
|                  | check               | Fairway         | 69              | 2604                | 209        | 186     | 100        |
| CV%              |                     |                 | 3.9             | 6.4                 | 7.2        |         |            |
|                  |                     | LSD 0.05        | 7.1             | 393.1               | 27.6       |         |            |

### Bromegrasses

The bromegrass trial established in 2016 comprised 4 proprietary entries that included 1 cultivar of meadow bromegrass and 1 of smooth bromegrass and 2 cultivars of hybrid bromegrass, where Fleet and Carlton were used as the meadow bromegrass and smooth bromegrass checks respectively. Figure 13 is a photograph of the crop year 2017 of the bromegrass trial established in 2016. The trial will continue for two more crop years.

In the first crop year 2017, the meadow bromegrass BAR BCF 1FRRL and the hybrid bromegrass AC Knowles produced higher seed yields than Fleet by 11 and 3% respectively, and then Carlton by 204 and 190% respectively. However, the yield differences between BAR BCF 1FRRL, AC Knowles, S9356M and Fleet were not statistically significant (Table 9).

Both smooth bromegrass cultivars produced significantly lower seed yields than meadow and hybrid bromegrass cultivars. Bromegrasses are one of the most popular forages for pasture and hay production for livestock. Therefore, end-use value of bromegrasses lies in the biomass quantity, quality and stand persistence. For biomass production Carlton, S9356M and AC Knowles remained at par with significantly higher yield than that of Fleet. The yield differences between BAR BCF 1FRRL, BAR BIF 1GRL and Fleet were not significant statistically (Table 9).



**Figure 13** Photograph taken in 2017 of the bromegrass trial established in 2016 at Beaverlodge, AB.

**Table 9**Seed yield, plant height and dry matter yield of bromegrasses in 2017 from the trial<br/>established in 2016 at Beaverlodge, AB. The trial was seeded on May 26, 2016 and<br/>harvested on August 2, 2017.

|                  |                   |                      | Plant<br>height | Dry matter<br>yield | Seed yield |        |       |         |
|------------------|-------------------|----------------------|-----------------|---------------------|------------|--------|-------|---------|
| Company          | Crop species      | Cultivar             | cm              | (kg ha-1)           | kg ha⁻¹    | lb ac- | % of  | % of    |
|                  |                   |                      |                 |                     |            | 1      | Fleet | Carlton |
| AAFC             | Hybrid bromegrass | S9356M§              | 122             | 5624                | 523        | 467    | 88    | 162     |
|                  |                   | AC Knowles           | 119             | 5291                | 612        | 546    | 103   | 190     |
| Barenbrug<br>USA | Meadow bromegrass | BAR BCF 1FRRL        | 120             | 4689                | 658        | 588    | 111   | 204     |
|                  | Smooth bromegrass | BAR BIF 1GRL         | 117             | 5192                | 155        | 139    | 26    | 48      |
|                  | Meadow bromegrass | Fleet - Check 1      | 118             | 4581                | 593        | 529    | 100   | 184     |
|                  | Smooth bromegrass | Carlton – Check<br>2 | 113             | 6276                | 322        | 287    | 54    | 100     |
| CV%              |                   |                      | 2.2             | 8.8                 | 21.6       |        |       |         |
| LSD 0.05         |                   |                      | 5.6             | 993.6               | 219.5      |        |       |         |

## Conclusions

One trial on creeping red fescue and one on timothy were concluded in the reporting period, while one trial each of creeping red fescue, meadow fescue, tall fescue, timothy, wheat grasses and bromegrasses underwent the evaluation for first crop year and is subjected to further evaluations in the coming seasons. Variable weather patterns in different years provided desirable test environment for examining the adaptability of the cultivars in the peace region. Creeping red fescue being an amenity grass, seed yield is the major performance indicator in the PGRST. However, for other forage species, biomass yield will also be duly considered in the evaluation. Forage nutritive value is also an important consideration to be pursued in the future studies.